

BEng(Hons) Electronic Engineering

Final Year Project

‘Web Based Weather Station
Using a ‘TINI’ Java Machine’

By

David Pilch

04 June 2002

Module - UEE034C3

Supervisor - Don Weston

Acknowledgements UEE034C3

 i

Acknowledgements

I would like to thank Don Weston for introducing me to this truly fascinating
subject and for guiding me through the last few months. I would also like to say
a special thanks to my family and friends for providing me with support and for
putting up with me during this time.

Contents UEE034C3

 ii

Contents

1 SUMMARY 1

2 INTRODUCTION 2

2.1 MODULE DETAILS 2
2.2 PROJECT OVERVIEW 2
2.3 PROJECT AIMS 3
2.4 LEARNING AIMS 3

3 PROJECT PLANNING 4

3.1 MAJOR DELIVERABLES 4
3.2 PROJECT CONSTRAINTS 4
3.3 MEASUREMENT OF PROJECT SUCCESS 4
3.4 RESOURCE REQUIREMENTS 4
3.4.1 MATERIALS & EQUIPMENT REQUIRED 4
3.4.2 REQUIRED KNOWLEDGE AND LEARNING 5

4 PLANNING & RESEARCH 6

4.1 TINI INFORMATION 6
4.1.1 WHAT IS TINI? 6
4.1.2 TINI APPLICATIONS 6
4.2 INTERFACE BOARDS 7
4.3 TUTOR BOARD 8
4.4 WEATHER STATION COMPONENTS 9
4.5 HARDWARE 11
4.6 WEB PAGE DEVELOPMENT 11
4.7 TINI SOFTWARE DEVELOPMENT 12

5 IMPLEMENTATION 13

5.1 THE SETUP 13
5.2 CONFIGURING TINI 13
5.2.1 JAVAKIT PROBLEMS 14
5.2.2 RUNNING JAVAKIT 15
5.2.3 SLUSH 16
5.3 TINI SOFTWARE DEVELOPMENT 16
5.3.1 TINI SOFTWARE FORMAT & TOOLS 16
5.3.2 FIRST PROGRAM 17
5.3.3 SOFTWARE REQUIREMENTS 18
5.3.4 READING FROM THE ADC 18
5.3.5 WEBPAGE INTEGRATION IDEAS 21
5.3.6 TINIHTTPSERVER 22
5.3.7 ADC SERVLET 23
5.3.8 CHECKING RAIN FALL 27
5.3.9 DISPLAYING DATA TO THE LCD 28
5.3.10 TEMPERATURE GRAPH 30
5.4 WEBSITE DEVELOPMENT 31
5.5 SENSOR DEVELOPMENT 32
5.5.1 SUN LIGHT LEVEL 32
5.5.2 TEMPERATURE 32
5.5.3 WIND DIRECTION 33

Contents UEE034C3

 iii

5.5.4 WIND SPEED 34
5.5.5 RAIN GAUGE 35
5.6 HARDWARE DEVELOPMENT 36
5.6.1 LIGHT SENSOR 37
5.6.2 WIND SPEED 38
5.6.3 WIND DIRECTION 39
5.6.4 TEMPERATURE 39
5.6.5 RAIN 41
5.6.6 COMPLETE CIRCUIT 41

6 TESTING 43

6.1 SOFTWARE 43
6.2 HARDWARE 43
6.2.1 INDIVIDUAL 43
6.2.2 WHOLE SYSTEM 43
6.3 LAN 44
6.4 WAN 44

7 OUTCOMES & PROBLEMS 45

7.1 FINISHED STATE 45
7.2 PROBLEMS 45
7.3 CRITICAL ANALYSIS 45
7.4 FUTURE DEVELOPMENT 45

8 CONCLUSION 46

9 BIBLIOGRAPHY 47

9.1 WEBSITES 47
9.2 MANUALS & DATA SHEETS 47
9.3 BOOKS 47

10 APPENDICES 1

10.1 CODE 1
10.1.1 ADC.CLASS – DOS 1
10.1.2 ADC.CLASS 2
10.1.3 ADCSERVLET.CLASS 4
10.1.4 FILEWRITE.CLASS 7
10.1.5 FILEREAD.CLASS 8
10.1.6 LCDWRITE.CLASS 10
10.1.7 RAIN.CLASS 12
10.1.8 MUXSELECT.CLASS 14
10.2 PICTURES 15
 15
10.3 EMAILS 17

11 REFERENCES I

Summary UEE034C3

 1

1 Summary

This report looks at the design and development stages of building a web based
weather station using a very small Java Machine called TINI. TINI is Ethernet
equipped and boasts extensive I/O capability. This machine is used in this
project to provide users with the ability to connect to it and retrieve the latest
simulated weather data through a web browser. All of the weather station
sensors have been designed and built within the timescale of this project. The
whole project was tested fully on a Local Area Network (LAN) and views on
getting TINI onto the internet were formed.

Introduction UEE034C3

 2

2 Introduction

2.1 Module Details

2.2 Project Overview

This project looks at the development of a web-based weather station using a
relatively new technology called the Tiny InterNet Interface (TINI). The website
for TINI1 describes it as:

‘A platform developed by Dallas Semiconductors to provide system designers
and software developers with a simple, flexible and cost effective means to
design a wide variety of hardware devices able to connect directly to corporate
and home networks. The platform is a combination of a small but powerful
chipset and a JavaTM-programmable runtime environment. The chipset provides
processing, control, device-level communication and networking capabilities.
The features of the underlying hardware are exposed to the software developer
through a set of Java application programming interfaces.

The primary objective of the TINI platform is to give everything from small
sensors and actuators to factory automation equipment and legacy hardware a
voice on the network. This allows the devices to be monitored, controlled and
managed remotely.’

The project investigates the capability of TINI by using an interface board
developed by Taylec who are a Bristol based electronics company that
specialise in hardware support for the TINI platform. For more detailed
information about TINI and the Taylec interface board please see section 5.1.1.

For this project the TINI board is connected to some external electronic
hardware which has been designed and developed as part of the project. This
hardware consists of various electronic sensors that make up a weather station.
The data from the sensors is collected and stored by the TINI machine. Users
can log onto TINI via a webpage and retrieve the latest sensor data.

This project was found through the University of the West of England (UWE) in
Bristol. The supervisor for this project (Don Weston) was already investigating
the use of TINI as a teaching aide for foundation year students at UWE. Due to
time restraints, he was looking for a student to take on the project and
investigate the capabilities of the TINI machine. The idea of gearing the project

Module Title Individual Project (Electronics)
Module Code UEE034C3
Award BEng (Hons) Electronic Engineering
Credit Rating/Level 30 Credits at Level 3
Module Leader Ashley Longden
Supervisor Don Weston

Introduction UEE034C3

 3

towards a weather station came from a contact at Taylec. They were looking
for someone to experiment with TINI as the interface to a remote weather
station. This provided an ideal scope for the project which sounded extremely
interesting, potentially enjoyable and ideal for a final year honours project.

2.3 Project Aims

Below is a list of the main project aims:

• Develop software to retrieve data from the Analogue to Digital Converter
(ADC) and display the values to the screen in a web browser
environment.

• Create software to demonstrate the other functionality of TINI and the
Taylec board.

• Design and develop any weather station sensors that are outside the
budget for this project and develop suitable hardware to interface the
sensors with the TINI board.

• Test the whole system over a LAN, making sure all of the information is
being displayed on the web page as required.

• Consider what is required to set TINI up on the internet to allow users to
access data across the world.

2.4 Learning Aims

Below is a list of the main learning aims for the project:

• Learn about the full potential of TINI and how it can be interfaced with the
outside world. Also learn how to develop programs for TINI machines to
manipulate the platforms different I/O functions.

• Learn how to develop web pages in HTML that can dynamically link to
external hardware to retrieve information.

• Develop ideas for future uses of the TINI platform in the working
environment.

Project Planning UEE034C3

 4

3 Project Planning

3.1 Major Deliverables

• Project proposal presentation

• TINI configuration and successful running of test programs

• Successful development and testing of ADC applications on TINI anmd
displaying data to a web page.

• Successful development and testing of the external hardware including
weather station sensors.

3.2 Project Constraints

The project is mainly limited with cost of equipment (see equipment listing in
3.3.2). Many of the weather station sensors are actually available for
applications like TINI. The sensors however can cost up to £500 altogether for
an entire weather station. Therefore some of the sensors will have to be
improvised. Another limitation is time. The project has to be finished by May
2002. Further development ideas can therefore only be investigated if time
permits.

TINI is almost fully documented on the internet. Therefore without an internet
connection this project would almost be impossible. All of the software and
support for TINI is downloadable from various sites across the internet.

3.3 Measurement of Project Success

The level of project success has been measured by comparing the actual
project deliverables and achievements throughout the project to the project
objectives set out in the planning stages.

3.4 Resource Requirements

3.4.1 Materials & Equipment required

Below is a list of the equipment required for this project:

• Windows Equipped PC with network capabilities.

• TINI SIMM board

• Taylec interface board for TINI.

• Power supply

• Serial cable

• Network cabling

• Necessary components for the external hardware. Integrated Circuits
(ICs), strip board and various connectors.

• Materials for development of weather station sensors

Project Planning UEE034C3

 5

Figure 3.2.2 below shows the rough purchase costs of the equipment required
for this project. This is assuming that a suitable PC is available for development
puposes.

Figure 3.3.2 – Table of Costs

The TINI SIMM board and the interface board were both purchased from Taylec
who are a Bristol based electronics company. Both of these parts had already
been ordered before the start of the project.

3.4.2 Required knowledge and learning

For this project there are two main areas for learning. This is making the
assumption that the hardware development is not really learning but more of
just applying previously learned methods.

Java for TINI

Applications for the TINI board are developed using the Java Application
Programming Interface (API). Knowledge of programming in Java is required
with special attention being paid towards the development of applications
specifically for the TINI board. There is also a required understanding of the
TINI applications that help with the development of TINI programs.

Webpage Development

The user interface for this project is a simple webpage. This webpage is
responsible for connecting to the TINI board and retrieving data from the
weather station sensors. Knowledge of designing web pages and how they
communicate with external sources is required to produce this interface.

*already purchased prior to the project start

Description Cost (£)

TINI SIMM board* 40

Taylec Interface Board* 80

Power Supply 10

Serial Cable 5

Networking Cable 5

Electronic Hardware Components 6

Weather Station Sensor Materials Minimal

Total 146

Planning & Research UEE034C3

 6

4 Planning & Research

4.1 TINI Information

4.1.1 What is TINI?

TINI is very small java machine produced by Dallas Semiconductors2. It
consists of a standard 72 pin SIMM board assembly and is based on a
DS80C390 microprocessor running at 36 MHz. This processor supports the
following I/O capabilities which are exposed through Java APIs:

• Dual serial ports

• Dual 1-Wire net interfaces

• Dual CAN (Controller Area Network) controllers

• 2-wire synchronous serial bus

• General-purpose digital I/O

• Easy system expansion using a parallel bus interface

• Direct connection to 10/100Base-T Ethernet networks

It also has a real time clock for time stamping, flash ROM for execution of the
runtime environment, 1 MByte of non-volatile SDRAM and a wide operating
temperature range of -20oC to +70oC. All of this only requires a single polarity
5v power supply and has a maximum current rating of 250mA. Figure 4.1.1
shows the TINI board.

Figure 4.1.1 – The TINI board

TINI has been designed to provide remote sensors and hardware the ability to
be part of a modern computer network. The TINI SIMM can be interfaced with a
multitude of different I/O boards depending on the required application. See
section 4.2 for more details.

4.1.2 TINI Applications

TINI can be used for stand alone applications such as local monitoring and
controlling of devices. However a large majority of TINI developers take
advantage of the networking capabilities for remote monitoring and control of
systems. Below are a few typical applications for TINI taken from the iButton3
website:

Planning & Research UEE034C3

 7

• Industrial controls - TINI can easily be used for communicating with
factory automation equipment, networked switches and actuators.

• Web based equipment monitoring and control - communicating with
equipment to provide remote diagnostics and data collection for
purposes such as monitoring device utilisation.

• Protocol Conversion - TINI based systems can be used to connect
legacy devices to Ethernet networks. Depending on the I/O capabilities of
the legacy system, this may be a job that can be done with a PC or
workstation as well. However, TINI can do the job at a small fraction of
the cost and size.

4.2 Interface Boards

Since the release of TINI in June 2000 various companies have started
producing interface boards for the TINI SIMM. These boards expose the I/O
capabilities of the TINI SIMM to the user. Below are a few examples of different
types of interface boards.

This is the TINI Initial Learning Tool
(TILT) from Systronix3. It was
designed as a low cost, basic
sockets board for TINI. It Consists
of a serial communications port,
Ethernet port, CAN interface, 1 wire
interface and a iButton socket.
Price - £35 (without TINI).

This is the Systronix TINI
Engineering Platform (STEP) from
Systronix2. This has extra
functionality of a Infra Red and a
100x160mm prototyping board.
Price - £45 (without TINI).

Planning & Research UEE034C3

 8

This is the Mini-T board from
Taylec. Has the most basic of
functionality. It consists of a serial
communications port, Ethernet port
and one wire interface.
Price - £30 (without TINI).

This is the Tutor board from Taylec.
It has extensive I/O capability with
onboard ADC, DAC, digital I/O,
CAN, 1-wire, serial communications,
Ethernet and even an onboard LCD
screen.
Price - £85 (without TINI).

The TINI Tutor board from Taylec has been used for the development of this
project. This board provides extensive functionality for developing a whole
range of applications. As the name suggests it is a great learning aide for new
developers. One of the aims of this project is to provide an insight to the
development of embedded Java applications. Information gained can then be
used to produce a demonstration tool in embedded systems for foundation year
students at UWE.

4.3 Tutor Board

The Tutor board is designed to allow TINI developers to get their own
embedded Java programs up and running as quickly as possible. The board
has the following functionality:

• Dual serial communications ports (RS232)

• Ethernet 10/100Base-T port

• 1-wire interface

• 2 line LCD screen

• 8-bit digital input via onboard dipswitches or header cable

• 8-bit digital output via onboard LEDs or header cable

Planning & Research UEE034C3

 9

• 8-bit Analogue to Digital Converter (ADC)

• 8-bit Digital to Analogue Converter (DAC)

• Interrupt and reset switches

• Onboard Light Dependant Resistor (LDR) for analogue input

• Control Area Network (CAN) interface.

• I2C bus (A two-wire serial bus used for control, diagnostic and power
management).

The layout of the Taylec Tutor board can be seen on page 15 of the
appendices.

4.4 Weather Station Components

Weather stations are becoming more complex as technology advances. We
are now able to monitor certain aspects of weather systems that would not even
have been thought of 20 years ago. Below is an extensive list of the different
weather station sensors that are used today.

Basic Sensors

• Temperature

• Wind Speed (anemometer)

• Wind Direction

• Rain Fall

• Sunlight Index

• Air Pressure (barometer)

• Humidity

Other Sensors

• Pollen Count

• Air Quality (pollution)

• Ultra Violet intensity (sunburn factor)

• Speed and direction of cloud motion (nephoscope)

• Visibility

• Radar maps

• Infra Red Satellite pictures (measure heat of objects)

• Visible Satellite pictures

• Lightening detection

Due to budget constraints, this project will be limited to investigating the sensors
that come under the ‘Basic Sensor’ section. A description of each sensor and
how it can be implemented for TINI is discussed below.

Planning & Research UEE034C3

 10

Sensor Description Types Cost (£) Implement?

Temperature Measures the air

temperature normally within

a vented box. Can be

calibrated for centigrade,

farenheit or kelvin.

Vary from a simple

thermistor which varies in

resistance depending on

the temp to a fully

electronic sensor

70p - £15

Yes

Wind Speed Measures the wind speed

by a rotating fan that usually

consists of 3-4 plastic cups.

The fan is propelled by the

wind which in turn rotates a

dc generator to output a

voltage.

Wind speed and direction

normally come in the

same package called an

anemometer. These can

also be made using a dc

motor or a stepper motor.

Basic:

£60

Advanced:

£400 Yes

(make)

Wind Direction Measures the direction of

the wind by using a vain

connected to a rotary

electronic position sensor.

This outputs a voltage

depending on the position.

This is normally combined

with the Speed to give you

the anemometer.

Same as above. They

can be made using a

simle position sensor or

even a modified

potentiometer.

As above

Yes

(make)

Rain Gauge This measures the amount

of rain fall by outputting a

digital count everytime a

known mass of water

passes through a funnel.

Generally quite complex

for the electronic version

but can be bought in a

package. Ther are also

methods for building your

own.

Basic:

£60

Advanced:

£200 Yes

(make)

Sunlight Index Measures the intensity of

the light. Normally retrieved

from an electronic light

sensor.

There are off the self

version avalible but in

general a LDR can be

used to measure light

levels.

50p - £5

Yes

Humidity Measures the percentage of

water within the air.

Humidity sensors can be

bought or very crude

versions can be made.

Very difficult to make your

won electronic version.

Basic: £25

No

Air Pressure Measures the atmospheric

pressure normally in millibar

readings.

Special electronic

pressure sensors are

needed to measure

pressure.

Basic: £20

No

The reason for not implementing the humidity and air pressure sensors is due to
budget restraints of the project. This is also the reason why the wind speed,
wind direction and rain gauge were made instead of bought.

Planning & Research UEE034C3

 11

4.5 Hardware

The standard hardware configuration of the Taylec board only provides one
Analogue to Digital Converter (ADC) input. This means in theory only one
analogue signal can be read in at a time. The weather station has at least 5
sensors that need to be read simultaneously. Some simple circuitry to switch
between the sensors was required.

Each sensor also required some signal conditioning before being fed into the
ADC. Signals into the ADC needed to range between 0 and 5v DC. Therefore
the output from each signal needed to be scaled to the same range.

4.6 Web Page Development

The user interface for this project is a website that is accessible through a
standard windows web browser. This allows the user to view all of the data
from the weather station on the screen. Websites and the web pages within
them are coded in Hypertext Mark-up Language (HTML). HTML lets you format
text, add graphics, sound and video, and save it all to a text file that any
computer can read. There are various applications such as Microsoft
FrontPage or Macromedia Dreamweaver that simplify the making of web pages
by actually writing the code for you. However these packages have limited
capabilities and are only really useful for creating the page template quickly.
With knowledge of HTML you are never limited to a particular program’s
features.

JavaScript is a programming language that can be embedded within web pages
to add interactivity to a page. It lets you create an ‘active’ user interface that
gives the user feedback as they navigate the web pages. For example you can
create buttons that become highlighted as you move the mouse pointer over
them. JavaScript can also be used to do mathematical calculations or to make
sure that users enter correct information when filling out online forms.
JavaScript is not really used in this project but could be used to improve the
weather station website at a later date.

Macromedia Flash 5 is a program that allows you to create graphical effects for
web pages. This can range from simple buttons that change state when
selected, to full animated movies. This is a far more powerful tool than
JavaScript for creating graphical effects for web pages and is being used more
and more throughout the internet. Many companies are now using Flash
movies as the introduction to their website, creating a unique user experience.
This technology was integrated into the weather station website towards the
end of the project to create the animated buttons in the menu bar.

Planning & Research UEE034C3

 12

4.7 TINI Software Development

As mentioned previously, applications for TINI are developed using the Java
API. Java programs have to be converted into a format suitable for TINI before
being executed on the board. For information on why this is required see
section 5.3.1.

A series of online lectures were used as an introduction to programming
embedded systems in Java. These were found at the following website link:

http://cwl.ssu.portsmouth.oh.us/classes/j1wire_class/

This series of lectures provided a good understanding of how Java applications
are created and compiled. It also gave a brief introduction to writing programs
for TINI applications.

One of the main issues with TINI is that it is almost entirely documented on the
internet through websites and downloadable manuals. However the support
that is there is extremely useful. All of the software that is required for TINI is
downloadable from various sites. The main support site for TINI is
www.iButton.com which has links to detailed instructions of how to setup TINI
and where to get the required software. This was the main site used throughout
this project for support.

Implementation UEE034C3

 13

5 Implementation

5.1 The Setup

Below is a list of the equipment required to setup TINI:

• TINI SIMM board

• TINI Tutor Board

• 9v Power Supply

• Ethernet Cabling

• Windows Equipped PC with Network Capabilities

For development purposes for this project TINI was setup in the following
configuration:

Figure 5.1 – Development Configuration

In this configuration TINI is available to anyone on the local network. TINI also
has access to the internet via the network address translator/ gateway.

5.2 Configuring TINI

As previously mentioned in section 3.2.2 TINI is mainly documented on the
internet. This includes all of the relevant software and support for initially
configuring TINI. Setup instructions from the iButton4 website were used. The
following software was downloaded:

• Java SDK version 1.3.1 from Sun5.

• Java Communication API6

• TINI SDK version 1.02d7

The Java SDK provides the relevant java compilers and class information. The
java communications API allows Java to communicate with the communication
ports on the computer. TINI SDK is all of the operating system and software

Development Computer
Running Windows XP

Professional

TINI Tutor Board

Ethernet Hub

Network Address
Translator

Cable
Modem

Implementation UEE034C3

 14

support needed for TINI. All of these were installed into their default directories
according to the instructions.

A program called JavaKit (that is part of the Java SDK) is then used to connect
to the TINI board through a serial communications port. This allows the TINI
operating system to be transferred to the TINI board via the communications
cable.

5.2.1 JavaKit Problems

One thing that the configuration instructions assumed was that the user had
certain knowledge of the DOS commands ‘set PATH’ and ‘set CLASSPATH’.
Unfortunately this was not the case. The importance of these commands was
about to become crystal clear.

The problem with Java compared to other modern programming compilers is
that it is still based around DOS commands. Modern operating systems such
as Windows XP are no longer based on DOS. They only have DOS simulators
which can sometimes be a bit temperamental.

The DOS command ‘set PATH’ allows users to specify a path for an application.
This allows the user to run applications from any directory in DOS without
having to type the full path of the command. DOS will search all specified paths
for an application, including all of the sub directories below these paths. If the
following path is set for Java then all of the Java applications can be run from
any directory in DOS:

set PATH C:\jdk1.3.1_02\bin %PATH%

The %PATH% part of this command simply includes any paths that have already

been set. However, this method of setting the PATH variable only works for
Windows 95 and 98. Windows XP requires that you add path variables through
the system control panel. By clicking on the advanced tab then the
‘Environment Variables’ button you can edit the system variables. After the
path variables have been added the machine needs rebooting before the
changes take effect.

It was not mentioned anywhere in the TINI documentation that you had to set
the PATH variables for Java, before using the given command line to run
JavaKit. It also did not describe anywhere of how to set the path variables in
Windows XP. This was found through the standard windows help files.

The ‘set CLASSPATH’ command is very similar to the ‘set PATH’ command but
allows you to specify the default directory for classes that are used for compiling
code. This was set in the same manner for Windows XP as described above
for the PATH variables.

After having problems with the installation and running of JavaKit it made sense
to create a program that installed all of the relevant files into the correct
directories for the user. The main thing that was a hassle to get right was

Implementation UEE034C3

 15

setting up the communications API. This involved manually transferring files to
specified directories. A program could easily be made to install Java SDK, the
communications API and TINI SDK all at once. As long as all of the source files
are in the same directory a batch file can be used to automatically copy files to
the correct directories. A batch file is basically a list of dos commands within a
text file that are run when the batch file is executed. The details of the batch file
are shown below:

Run the Java SDK 1.3 setup program.
jdk\jdk1_3.exe

Copy the communication API files to the Java SDK directories.
copy commapi\win32com.dll c:\jdk1.3.1_02\jre\bin
copy commapi\comm.jar c:\jdk1.3.1_02\jre\lib\ext
copy commapi\javax.comm.properties c:\jdk1.3.1_02\jre\lib

Make a new directory for the TINI SDK

mkdir c:\tini1.02.

Copy all the TINI SDK files to the new directory
xcopy tinisdk c:\tini1.02 /e

Once this has been completed all you have to do is execute the other batch file
provided called JavaKit.bat to run JavaKit. The JavaKit.bat file has the same
command line as described in section 5.2.2. All of the setup files, batch files
and a text file explaining the setup process can be zipped up into one file and
posted on the TINI website to help developers setup their TINI machines.

5.2.2 Running JavaKit

The easiest way of running JavaKit (which was not mentioned in any of the TINI
documentation) is by using the following command line in DOS:

C:\jdk1.3.1_02\bin\java –classpath
C:\tini1.02\bin\tini.jar; %CLASSPATH% JavaKit

This will still run even if none of the PATH and CLASSPATH variables have
been set. If all of the environment variables have been set then all you need to
type is the following:

java JavaKit

So setting the PATH and CLASSPATH variables can save a lot of typing for
commands that are used regularly.

Once JavaKit is running, downloading the operating system (slush) to the TINI
board is easy. JavaKit uses a serial cable to connect between the com port on
the development computer and the serial 0 port on the Taylec board. The serial
0 port must be used at this stage, not the serial 1 port.

Implementation UEE034C3

 16

5.2.3 Slush

The iButton website describes slush as:

‘A small system shell intended to provide a Unix-like interface with serial (TTY),
Telnet, and FTP servers.

Slush is less than a full operating system, but more than a simple shell. It
provides a way to view and manipulate the file system and to control system
functions such as the watchdog timer and network configuration.

The system is designed to be a multi-threaded, multi-user system allowing
simultaneous login sessions. Slush uses a username/password combination to
authenticate a login request. Users can be added and removed from the system
by a user with super user privileges.’

Once slush is installed the Ethernet needs to be configured so that TINI can be
accessed over the network. This is just a case of using the ‘ipconfig’ command
provided with slush. With this you can provide the TINI board with a fixed IP
(Internet Protocol) address, subnet mask and gateway. TINI was configured as
follows:

Hostname : mytini.
Current IP : 192.168.1.10
Default Gateway : 192.168.1.250
Subnet Mask : 255.255.255.0
Ethernet Address : 00:60:35:00:9d:1d
Primary DNS : 194.112.32.1
Secondary DNS : 194.112.32.10
DNS Timeout : 0 (ms)
DHCP Server :
DHCP Enabled : false
Mailhost :
Restore From Flash : Not Committed

Once the Ethernet has been configured you can log onto TINI using the
standard windows Telnet program. Or transfer files to TINI with the standard
File Transfer Protocol (FTP) program. With TINI now configured for network
access you no longer need to use the serial cable or JavaKit for communication.

5.3 TINI Software Development

5.3.1 TINI Software Format & Tools

As mentioned previously, the functionality of TINI is exposed through the Java
API. This means that even simple Java programs will run on TINI machines.
Unfortunately it is not quite as simple as just transferring a class file to the TINI
board and running it. Java programs have to be converted into a format
suitable for TINI first. You need to do this because TINI is an 8-bit
microcontroller and does not have the power to resolve everything during

Implementation UEE034C3

 17

execution with any reasonable speed. So converting to a special TINI file (*.tini)
helps TINI's Java Virtual Machine (JVM) by resolving references at build time
instead of at run time.

TINIConvertor is a program provided with the TINI SDK that converts Java
(*.class) programs to the TINI (*.tini) format. Once in this format the files can be
transferred to the TINI board by using FTP and executed.

5.3.2 First Program

A test program was provided with the Tutor board, which demonstrated all of
the functionality of the board. This was already in the correct TINI format and
was transferred to the TINI board using the FTP program. The program could
then be executed by connecting to TINI using a Telnet session. Both FTP and
Telnet sessions require login names and passwords. For development
purposes during this project the following default login name and password was
used:

Login Name: root

Password: tini

Once logged on with the Telnet session it is very simple to actually run
applications. All you need to do is go to the directory where the *.tini was
transferred to and type the following:

java test.tini

In this case ‘test.tini’ is the test program for the Tutor board. This program
stepped through each function of the board, for example printing the date to the
LCD display and turning the digital output LEDs on and off. All functions
worked correctly.

Now it was time to write and test the first program. Staying with programming
tradition the first application simply printed ‘Hello World’ to screen upon
execution of the program. The reason for doing such a simple program was to
check the method of compiling Java code and converting it into the TINI format.
This method is described below:

1. Write the required program code in a text editor such as Notepad. Save
the text file with the exactly the same name as the class that has been
made (case sensitive) and give it a .java extension.

2. Open a DOS window and go to the directory where the *.java file was
saved. Type the following to compile the code:

javac myprog.java

3. If there are no errors a myprog.class file should now be in the same

directory as the myprog.java file. This file now needs to be converted to
the TINI format. Type the following:

Implementation UEE034C3

 18

java TINIConvertor –f myprog.class –o myprog.tini –d
c:\tini1.02\bin\tini.db

The –f specifies the file/zipfile/directory of the classes to be converted,

-o specifies the output file name for the converted file and –d specifies

the TINI database file required to do the conversion.

4. If the conversion was a success a myprog.tini file should be in the same

directory as the myprog.class file. This file can be transferred to the TINI
board using an FTP session and executed through a Telnet session.

5.3.3 Software Requirements

The main idea for this project is to use TINI as a remote monitoring device. The
data that TINI monitors is provided by five different weather station sensors.
Four of the five sensors will provide a varying analogue voltage within the range
of 0-5v. The remaining sensor is the electronic rain gauge. This provides a
TTL logic value of either 0 or 1 (5v) as the input.

The user needs to be able to connect to the TINI machine in real time via a web
browser and retrieve data from all of the sensors simultaneously. This data
needs to be displayed to the web page that the user is viewing.

The main problem with this is that the Tutor board only has one ADC, which
means you can only read in one analogue signal at a time. This project needs
to read in 4 simultaneously. One way of overcoming this problem is to use a 4
to 1 multiplexer that allows you to select which channel to read. All you have to
do then is very quickly switch between the 4 channels, taking a reading for each
channel. The user therefore thinks that the data is being read in at the same
time when really it is actually being read in one after each other just very
quickly. The digital output from the Tutor board can be used to control the
channel select pins on the multiplexer.

5.3.4 Reading from the ADC

This program simply selects a channel on the multiplexer (applies a digital
output) and reads the value from the ADC. It does this 4 times with a different
channel select each time. This data is then displayed in real time to the TINI
command window (Telnet session dos window). See Figure 5.3.4 for the layout
of the multiplexer circuit.

Implementation UEE034C3

 19

Figure 5.3.4 – Multiplexer Layout

The Java classes ADCManip.class and DigitalOutputManip.class are supplied
with the Tutor board. The test.tini program supplied with the Tutor board uses
these classes to manipulate the ADC and digital outputs. The methods were
looked at and used to create the following program. Firstly to make the using of
the DigitalOutputManip.class a little easier a MuxSelect.class was made. This
simply allows you to refer to the channels as CH1, CH2 rather than the actual
hexadecimal value. It is actually an extension of the DigitalOutputManip.class
file. Figure 5.3.4.1 below shows the flow diagram for this class.

Figure 5.3.4.1 – Flowchart for MuxSelect.class

Multiplexer

Sensor 1

Sensor 2

Sensor 3

Sensor 4

To ADC

Digital Select

C B A

Digital Select Sensor

000 1

001 2

010 3

011 4

Implementation UEE034C3

 20

The MuxSelect class is used in all of the programs that manipulate the digital
output of the Tutor board. Figure 5.3.4.2 show the flowchart for the basic ADC
read program.

Figure 5.3.4.1 – Flowchart for Adc.class progam

Implementation UEE034C3

 21

This is a very simple program that simply selects a channel (sets the digital
output to a certain value) then reads the ADC value from that channel and
displays it to screen. It reads all 4 channels then pauses for 2 seconds before
repeating. The Java code for this program can be seen on page 1 of the
appendices. This program was compiled and converted to TINI format and
transferred to the TINI board.

The Tutor board has three options as the input for the ADC. Either and external
input, an onboard potentiometer or an onboard Light Dependant Resistor
(LDR). This can be selected by changing a jumper setting. For the purpose of
the software testing the LDR option was selected. This is the easiest thing to
change in terms of value. By simply turning a light on and off you can change
the ADC input value dramatically.

The simple ADC program was run on the TINI board and worked as expected.
The onboard LEDs showed the digital output changing and the ADC values
being displayed to screen changed according to the light level being applied to
the LDR.

5.3.5 Webpage Integration Ideas

Now that the simple ADC program was working, manipulating the ADC was no
longer a problem. The main hurdle to overcome now was how to retrieve this
data remotely without having to log on to TINI with a Telnet session.

The first idea was to still use a Telnet session but to carry out an automatic
login. Telnet commands can be issued from a webpage in HTML code. The
command line shown below can be used from the address line in a web
browser to log onto some Telnet servers automatically.

telnet://loginname:password@telnetaddress

so for this TINI it would be:

telnet://root:tini@192.168.1.10

Unfortunately TINI does not support this method. The only way to log onto TINI
through Telnet (without manually reconfiguring the operating system) is by
entering the login name and password. Even if the auto login did work the data
would still need some major manipulation to make it compatible with a
webpage.

However this auto login does work for FTP through a web browser. This makes
transferring files to TINI a lot simpler and quicker. The screen shot in Figure
5.3.5 shows the TINI file system from internet explorer.

Implementation UEE034C3

 22

Figure 5.3.5 – Accessing TINI through a web browser

At this stage there was still no successful method of remotely accessing data
from the TINI ADC through a web browser. An e-mail was sent to the TINI
interest group8 asking about the problem of remote access through a web
browser. The reply to this e-mail can be seen on page 16 of the appendices.
The feedback was extremely helpful and suggested using a program developed
by Smart Software Consulting9 (SmartSC) called TiniHttpServer. This program
converts TINI into a very small web server allowing it to serve its own web
pages. This would allow TINI to embed the data read from the ADC in a web
page stored locally. This webpage could then be called up as a frame within a
main webpage on another server.

5.3.6 TINIHttpServer

TiniHttpServer is described by SmartSC as:

‘A multi-threaded HTTP server for TINI that supports Java Servlets.
TiniHttpServer turns your TINI into a web server with server-side programming
capabilities. As distributed, TiniHttpServer is ready to serve up your Java
applets, HTML documents, and other files directly from your TINI, plus it is
bundled with nine demonstration servlets.’

A servlet is a Java class used to extend the capabilities of a server that hosts
request-response applications. Servlets can be invoked and executed on a
server, usually on behalf of a client, while Java applets work on the client side.
Servlets are most commonly used to extend the applications hosted by Web

Implementation UEE034C3

 23

servers. So for the purposes of this TINI project servlets can be used to
manipulate the ADC on the Tutor board and display the data to a web page.

To allow the TiniHttpServer to be loaded to the TINI board the following
software is required:

• The TiniHttpServer software from SmartSC7.

• The class files from the Java Servlet Specification 2.210

• Ant version 1.411 - an open source cross platform build tool written in
Java. TiniHttpServer build environment is based on Ant.

• TiniAnt 1.1.112 - a free plug-in for Ant that integrates the TINI build
process into Ant.

This was all downloaded from the relevant sources and installed as instructed.
After configuring some of the files to be specific to the TINI machine being used,
TiniHttpServer could be loaded to TINI by simply going to the TiniHttpServer

directory in DOS and typing ant. This automatically installed all of the required

files onto the TINI machine. After resetting TINI the HTTP server was ready to
use.

By entering the IP address (192.168.1.10) into the address bar of the web
browser, the default webpage for TiniHttpServer was displayed. This provided
links to all of the demonstration servlets provided with the server software.
They all worked fine. Now it was just a case of writing a servlet specifically for
this project and getting it to work. Within the TiniHttpServer documentation
there is a good guide to compiling the server software with your own servlets
and web pages.

5.3.7 ADC Servlet

To get an idea of how servlets are written, the example servlets provided with
the TiniHttpServer software were looked at. When connected to TINI these
servlets simply printed to file HTTP code which had data from TINI embedded
within it. So the user would see a webpage with real-time information. So now
the previous ADC program needed to be converted into a servlet format.

The servlet could retrieve the ADC data directly every time a user accesses the
web page. This would display the data at that exact point in time but could
cause a few problems as soon as multiple users try to access the same page all
at the same time. The successful retrieval of data is relying on the multiplexer
scrolling through all 4 channels in the correct order. However if more than one
user attempts to retrieve data at times that are only milliseconds apart from one
another, the multiplexer could become unsynchronised. Therefore the users
could receive completely wrong data.

This problem can easily be overcome by running a separate program to read
the data from the ADC periodically and saving the values to a file. Each time
the data is read from the ADC it overrides the current data in the file. All the
servlet does then is to read the data from the file rather than directly from the

Implementation UEE034C3

 24

ADC. This means that the multiplexer always stays synchronised because it is
no longer controlled by user input. Now multiple users can read the same file at
the same time and all access data which is only a matter of seconds old, thus
still in relative real time.

There are now two sections to reading the ADC data, the program for actually
reading and storing the data to file and the servlet that users use to access the
data. The flow chart in Figure 5.3.7 explains how the reading and storing of the
ADC data works. See page 2 in the appendices for the actual code.

Figure 5.3.7 – Flowchart for AdcRead.class program

Implementation UEE034C3

 25

This program needs to run continuously in the background whenever TINI is
turned on. By editing the start file (192.168.1.10/etc/.startup) for slush you can
make programs automatically start when TINI is powered up or reset. The
easiest way of doing this is to copy it from the /etc directory from TINI and edit it
in notepad, then simply override the existing file on TINI with the modified
version. The start up file now looks like the one below:

########
#Autogen'd slush startup file
setenv FTPServer enable
setenv TelnetServer enable
setenv SerialServer enable

#Add user calls to setenv here:

initializeNetwork
########
#Add other user additions here:
java /bin/TiniHttpServer.tini /etc/server.props &
java /docs/adc/Adc.tini

The last two lines have been added to automatically start the TiniHttpServer
and the Adc.tini program.

Now that the ADC data is being updated to a file, the servlet has to open up the
file and include the data within the HTTP code. Figure 5.3.7.1 shows the
structure of the AdcServlet. This servlet is an extension of the standard Java
HTTPServlet.

Implementation UEE034C3

 26

Figure 5.3.7.1 – Flowchart of the AdcServlet.class program

The first time of running this code for real did not work. This was simply
because the paths for the files were wrong for the light level pictures and data
files. This was due to the ADCServet being in a different directory to the other
files. Once the file path was changed the light level of the room was displayed
in real time to the web browser screen. This was a major milestone for the
project. To test this fully the multiplexer hardware needed to be built with
multiple sensors attached. Figure 5.3.7.2 is a screen shot of the webpage. For
more details about the rainfall function in figure 5.3.7.1 see section 5.3.8.

Implementation UEE034C3

 27

Figure 5.3.7.2 – A screen capture of the AdcServlet

As you can see instead of printing a number to screen for the light level a
picture is displayed representing the level of light. There are 4 images; moon,
cloud, sun/cloud and sun. See page ?? of the appendices for the actual code.

5.3.8 Checking Rain Fall

The rainfall value is slightly different to the other signals because it only
changes between logic 1 and logic 0. A logic 1 pulse signifies that the rainfall
has increased by 1mm (see section 5.5.5 for more details). The other sensors
have a varying voltage as the input therefore they are fed into the ADC through
the multiplexer. The fact that the rainfall sensor only changes logic states
means that it can be used as a digital input rather than an analogue. A program
was made to continuously check the state of the digital input port. Every time
the logic state changes from a 0 to a 1 a value in a file gets updated. The
AdcServlet program simply reads the value of the rain data file and displays it to
the screen at the same time as it reads the ADC data file. This appears to the
user that all data is being read from the sensors and displayed at the same
time. The value of this file gets reset to 0 at the end of each day. Figure 5.3.8
shows the structure of the Rain.class program.

Implementation UEE034C3

 28

Figure 5.3.8 – Flowchart of the Rain.class program

See page 12 of the appendices for the actual code.

5.3.9 Displaying Data to the LCD

Now that data is successfully being displayed to a webpage (pending hardware
development) it is time to look at the other functionality that is available on the
Tutor board. What if you want to use TINI to monitor the weather sensors as a
stand alone system? For example you want to make TINI and the sensors
portable to take on field work. Currently you need a computer with a web
browser to access the information. You could use the laptop computer to make
it a portable system, or you could use the Liquid Crystal Display (LCD) that is

Implementation UEE034C3

 29

built onto the Tutor board. By displaying data to the LCD screen you could also
use it during setting up of the system if you can not gain access to web
browsing facilities. This would allow the user to check that data is being read
correctly.

A program was developed to display the sensor data to the LCD screen. Users
can select which sensor data is displayed on the LCD by changing the state of
the onboard dip switches. Only dip switches 1 to 5 are used. If a dip switch is
on then the data for that sensor will be displayed in turn. If none of the dip
switches are on then the message “Web Server Mode” is displayed to indicate
that the data can still be viewed through a web browser. This program simply
uses the existing LCDManipFormat class to manipulate the LCD screen and the
existing DipManip class to manipulate the dip switches. Figure 5.3.9 shows the
structure for the LCDWrite program.

Figure 5.3.9 – Flowchart of the LCDWrite.class Program

As you can see from figure 5.3.9 the dip values used to check were actually
8,7,6,5,4, instead of 1,2,3,4,5. This is because the dip switch package has
been put on the wrong way round on the Tutor board. The number 1 dip switch
is normally the Least Significant Bit (LSB) of value 1 but in this case it is the

Implementation UEE034C3

 30

Most Significant Bit (MSB) of value 128. For this reason the opposite dip switch
values are used so that when the user selects dip switch 1 the 1st sensor data is
displayed. This program was also added to the start up file for TINI.

5.3.10 Temperature Graph

A program was developed towards the end of the project to take a temperature
reading every hour for 24 hours then create a graph of the data recorded. This
allows any user to see the temperature range over the last day. Each day the
temperature graph gets updated with the previous day’s results. This is really to
demonstrate how to draw basic graphs in HTML code. It also has quite a
practical side to it. There are two stages to this program, one takes a
temperature reading every hour and stores the value to a file, the other converts
the recorded values into a graph at the end of the 24hrs. Figure 5.3.10 shows
the structure for the temperature graph program.

Figure 5.3.10 – Flowchart of the FileWrite.class program

For purposes of testing this program was run using minutes rather than hours.
So a graph was produced every 24 minutes. This saved waiting lots of time.
The program has also been tested over several days sampling every hour. See
page 7 of the appendices for the actual code.

Implementation UEE034C3

 31

5.4 Website Development

The user interface for this project is a webpage that was designed to
incorporate the AdcServlet show in figure 5.3.7.2. This web page is part of a
larger website designed to demonstrate the flexibility and power of the TINI
machine. There are various pictures and details of the TINI hardware with links
to other useful sites. A description of this specific project takes up most of the
website. It also has support section to help new TINI users setup their systems
easily. It outlines the problems that were encountered during the early stages
of this project and offers a step by step guide of how to setup TINI on a network.
This is using the setup program discussed earlier in section 5.2.1.

Most of the web pages within this website were designed initially by hand using
HTML. However Microsoft FrontPage was used later on to adjust the layout for
some of the pages and to add in extra features. Navigation around the website
is controlled by a menu bar down the left hand side of the screen. This menu
bar was designed using Macromedia Flash 5 to enable the buttons to change
state with the user input. See section 3.3.2 for more details about Flash 5.

The main page used to display the weather station sensor data, actually
consists of 4 different web pages. The menu bar down the left hand side is one
page, the main page to the right is another. Then embedded within this main
page there are two pages served from TINI. The first being the weather station
data (AdcServlet) and the other being the previous days Temperature graph.
These were included in the main page by using inline frames. An inline frame is
basically a webpage within a webpage. The AdcServlet has been programmed
to refresh itself automatically every 10 seconds. Figure 5.4 show a screen shot
of the main webpage with the AdcServlet embedded within it.

Figure 5.4 – Screen shot of the main weather webpage

Implementation UEE034C3

 32

5.5 Sensor Development

The weather station sensors that were used for this project are as follows:

• Sun Light Level

• Temperature

• Wind Direction

• Wind Speed

• Rain Gauge

These 5 sensors were designed and developed for this project to save costs.
Most of these sensors would not be suitable to operate in the real world but are
perfectly suitable for the purposes of this project. The sensors are described
below:

5.5.1 Sun Light Level

The sensor to measure the level of light for this project is a simple Light
Dependant Resistor (LDR). As the name suggests the resistance across the
terminals varies depending of the amount of light it receives. It has a resistance
of 2MΩ when dark (0 Lux) and a resistance of 33KΩ at 10 Lux. Lux is the
measurement of the intensity of light. Originally one Lux was the light falling on
a surface one foot away from a "candle". Now it is a carefully calibrated light
source. With very bright light the resistance of the LDR becomes insignificant.
Figure 5.5.1 shows the LDR.

Figure 5.5.1

The LDR was purchased from Maplin Electronics for £0.99. To see how this is
integrated with the main circuit please see section 5.6.1.

5.5.2 Temperature

The temperature sensor is another very simple device. It is a LM335 precision
temperature sensor package. This is a 2 terminal Zener diode which has a
breakdown voltage directly proportional to the absolute temperature at
10mV/oK. So at 0oC (273oK) the output voltage is 2.73v using the circuit shown
in figure 5.5.2.2.

Implementation UEE034C3

 33

Figure 5.5.2.1 – Sensor Hardware Figure 5.5.2.2 – Circuit from data spec

The LM335 sensor is calibrated according to figure 5.5.2.2 using a 10KΩ
potentiometer. The actual temperature sensor hardware is show in figure
5.5.2.1. The LM335 was purchased from Maplin Electronics for £1.49. To see
how this is integrated with the main circuit please see section 5.6.4.

5.5.3 Wind Direction

The wind direction sensor for this project is quite a crude solution. This is only
suitable for demonstration purposes. A standard 100KΩ rotary potentiometer
was purchased and taken apart to remove the stop inside. This allows the
spindle to rotate all the way round. Before the stop was removed the degree of
rotation was limited to about 350o. However, removing the stop does mean that
there is about a 10o section that has zero resistance. This section was simply
set to be the value for North. There are rotary position sensors that are
designed for this type of problem but unfortunately even the cheapest cost
about £15. Due to budget restraints the potentiometer option was chosen.
Figure 5.5.3 shows the wind direction sensor.

Figure 5.5.3 – Wind direction sensor

In this current state it could never read the wind direction because it doesn’t
even have a vain to be moved with the wind. The main thing that this sensor
shows is the concept. Users can demonstrate the functionality by simply
turning the potentiometer. To see how this is integrated with the main circuit
please see section 5.6.3.

Implementation UEE034C3

 34

5.5.4 Wind Speed

This sensor was a bit more complicated to create than the previous ones. An
electronic signal was needed as the output from a rotating set of plastic cups.
These cups needed to rotate when placed in a wind stream. A search on the
internet for ‘home made anemometer’ was carried out and a link to the
www.otherpower.com website was found. This website explained in detail how
to make your own anemometer.

There were two different options both very similar in approach. The first was to
use a simple dc motor as a voltage generator. This would produce an output
voltage linear to the speed that the spindle was rotating at. However, a dc
motor looses its linearity at higher speeds and the brushes inside a dc motor
eventually wear out. The other alternative (which is a far better solution) is to
use a brushless stepper motor. This retains linearity at high speeds because
the voltage can also be compared to the rotational frequency. A stepper motor
could typically have 24 windings to provide a step size of 15o. When being
turned manually, it will produce 24 pulses for every rotation. This pulse count
can be read as a frequency and converted into speed. This makes the stepper
motor far more accurate and linear. Also a stepper motor does not use brushes
like dc motors, therefore they are far more durable and less likely to wear out.

For this project it was decided to use a simple 6v dc motor. Although this was
the less accurate and less durable option it worked out to be the cheaper one.
As mentioned before, the main aim of this project is to provide a demonstration
tool, so the accuracy of the equipment is not really the main priority. Equipment
accuracy and reliability can be looked at as a future development. Figure 5.5.4
shows the plastic cup construction, mounted on top of a 6v dc motor.

Figure 5.5.4 – Wind speed sensor

All of the parts for this sensor were sourced from various different resources, so
this sensor did not actually cost anything (other than time) to build. To see how
this is integrated with the main circuit please see section 5.6.2.

Implementation UEE034C3

 35

5.5.5 Rain Gauge

This was the most complex and time consuming sensor to design and build. A
method was needed to measure electronically the amount of rainfall over a
period of time. The most common way to measure the amount of rainfall
without electronics is by using a funnel and a container with a measurement
scale up the side. This can be converted to an electronic scale by using the
natural conduction characteristics of water. See figure 5.5.5.1 for details.

Figure 5.5.5.1 – Basic electronic rain gauge

For this rain gauge you have one open ended wire on the bottom of the
container that is linked to ground. You then need several more open ended
wires that are positioned up the side of the container. All of these are linked to
a low voltage dc supply (5v) through Light Emitting Diodes (LEDs). All you do
then is add a teaspoon of salt to the bottom of the glass and wait for rain. As
the container fills up and reaches the first wire the water conducts electricity and
switches the first LED on. As the water gets deeper more LEDs turn on giving
you an indication of how full the container is. The salt in the bottom dissolves in
the water and helps to conduct the electricity. These outputs could be fed into a
controller instead of using LEDs for the display.

However there are some major draw backs to this approach. The main problem
is that at the end of every day the water has to be emptied from the container by
hand and more salt added for the next day. This is hardly a practical solution.

Another approach is a self emptying method designed around a balanced
spoon. The idea is to guide the rain water onto the spoon using a funnel.
When the spoon gets full enough the spoon tips off balance and empties the
spoon onto the ground. Therefore if you know the volume of the spoon and the
size of the capture area (the funnel) you can work out the amount of rainfall by
the number of times the spoon tips. To record this value a small magnet was
attached to the back of the spoon. When in its resting position the magnet
holds a reed switch closed and every time the spoon tips the circuit gets broken.
All you have to do is record the amount of times the circuit gets broken and you

GND

5v

SALT

Implementation UEE034C3

 36

have a rainfall value. Figure 5.5.5.2 shows a photo of the developed rain gauge
for this project.

Figure 5.5.5.2 – Complete rain gauge

This rain gauge has a two tiered effect because for the purpose of
demonstration, the water can not simply drop onto the floor. The emptied water
is guided into a funnel and the water can be collected in a container placed
beneath. It took several attempts before the correct shape for the spoon was
found. The cup of the spoon used here is quite long; this length helps to
completely empty the spoon as it tips. The water collects towards the back of
the spoon to start with and gradually creeps forward as it fills. At the point that
the spoon becomes unbalanced all of the water rushes forward to the front of
the spoon which off balances the spoon even more, thus in one swift action
completely emptying the spoon. To see how this is integrated with the main
circuit please see section 5.6.5.

5.6 Hardware Development

This section looks at the electronic hardware that was produced to integrate all
of the sensors described in section 5.5 with the TINI board. As mentioned in
section 5.3.4 the TINI board only has one ADC which means that the inputs
from the sensors need to be passed through a multiplexer controlled by TINI.
The multiplexer channels can then be quickly scrolled through to read in all of
the sensor data within a spilt second. This means that TINI can still have
visibility of all the sensors.

The ADC on the tutor board can read in values between 0 and 5 volts. This
means that all of the sensors have to be calibrated to produce values within this
range. Each sensor has a signal conditioning circuit where the data is
calibrated to range between 0 and 5 volts. The output from each of these

Implementation UEE034C3

 37

circuits is fed in to the multiplexer. All of the circuits are powered from the 5v
supply of the Tutor board via ribbon cables. The next few sections describe the
circuits for each sensor.

5.6.1 Light Sensor

The LDRs resistance can vary between a few hundred ohms when light and
2MΩ when dark. The easiest way of converting this resistance into a voltage is
by using simple voltage divider methods. We ideally want 5 volts into the
multiplexer when it’s very bright and nothing in when it’s completely dark. The
voltage divider rule is a follows:

Vin
RR

R
Vout

21

2

+
= where LDRR =1

If the value of R2 is too small (say 100Ω) then even with the LDR at only 100Ω
the maximum voltage is only 2.5 volts. If the value of R2 is too big then the
minimum value of Vout never really reaches 0. A compromise of 1KΩ was
decided. This provides a minimum voltage of 2.5mV (LDR = 2MΩ) and a
maximum voltage of 4.54v (LDR = 100Ω). The circuit can be seen in figure
5.6.1.

Figure 5.6.1 – Light sensor circuit diagram

A non-amplifying buffer has been placed between the output from the voltage
divider and the input to the multiplexer. This is to stop the large varying
resistance of the LDR having an unwanted effect on the multiplexer input

impedance.

LM324

GND

+5V

1K

 LDR

+

-

To Multiplexer

Implementation UEE034C3

 38

5.6.2 Wind Speed

The dc motor is rated a 6v for 2400rpm. Therefore if the cups were rotating at
2400rpm the voltage would be too high for the ADC input. Some calibration
values were needed from the wind speed sensor to get an idea of the true input
range for different wind speeds. The simplest way of calibrating the motor was
to attach a volt meter to the trailing leads from the motor. The wind speed
sensor was then taken for a drive in a motor car. The sensor was then held out
of the side window of the car by one person whilst another viewed the voltmeter
reading and made notes of voltage and the cars speed. This was done for
speeds up to 60mph. It was found that even at 60mph the voltage reading did
not get much higher than 2.2v. This was a bit lower than expected.

Although this calibration method was very crude it did provide some useful
results. The output from the motor would only have a chance of reaching 6v if
the wind was nearly 140mph! This is never likely to happen. It was decided
that the output from the motor could be amplified by 2 and it still would require a
75mph wind to reach 5 volts. Passing the signal through an operational
amplifier would also naturally limit the voltage on the input because the output
voltage is restricted to the supply voltage minus 1.5v. Therefore the voltage into
the ADC will never be over 3.5v. The resistor values required for a gain of two
can be worked out as follows:

1

12

R

RR
Vgain

+
=

To give a gain of 2 the values of R1 and R2 have to be the same. The resistor
value was chosen to be 1.5K because it is a medium value resistor and there
were plenty lying around. Figure 5.6.2 shows the circuit diagram for this sensor.

Figure 5.6.2 – Wind Speed sensor circuit diagram

Implementation UEE034C3

 39

5.6.3 Wind Direction

This circuit is very similar to the Light sensor. The voltage divider rule is used to
calculate the value of R2 with the potentiometer being a 100k logarithmic.
When carrying out testing with a linear pot the voltage was responding in a
logarithmic fashion. To make the voltage output more linear a logarithmic pot
was used.

Vin
RR

R
Vout

21

2

+
= where PotR =1

To provide a suitable voltage swing on the output a resistor value of 4.7KΩ was
selected. This provides a minimum voltage of 0.2v and a maximum voltage of
5v (when the pot is in its dead zone at 0Ω). The circuit for this sensor is show in
figure 5.6.3 below.

Figure 5.6.3 – Wind direction sensor circuit diagram

5.6.4 Temperature

The LM335 temperature sensor works between -40oC and 100oC. For this
project the temperature range will be limited to -10oC to 90oC. At -10oC the
voltage out from the LM335 is 2.63v. To calibrate this to the ADC specification
the output needs to be 0v at -10oC. Therefore a -2.63v offset needs to be
applied to the input temperature sensor output. This is done by using a voltage
inverter package (ICL7660S) to invert the 5v supply to a -5v. Then by using a
4.7KΩ potentiometer this value can be tweaked to give -2.63v. This is summed
with the output from the LM335 temperature sensor to give 0v at -10oC. The
maximum output will now be 1.1v at 100oC.

Implementation UEE034C3

 40

To calibrate this new range to the ADC specification the new temperature
sensor output can be multiplied by 5. This will produce a voltage of 5 volts
when the temperature is 90oC. The voltage amplification is carried out by an
op-amp. The resistor values for a gain of 5 are as follows:

1

12

R

RR
Vgain

+
=

K

KR

10

102
5

+
=

210)105(RKK =−×

KR 402 =

The nearest value for this is 39KΩ. The circuit diagram for this is shown in
figure 5.6.4.

Figure 5.6.4 – Temperature sensor circuit diagram

The actual maximum temperature that will be available from this circuit is about
70oC. This is because the maximum output from the op-amp is actually 5-1.5v
which is 3.5v. Therefore 5/100 = 0.05, then 3.5/0.05 = 70oC. This is still far
hotter than the atmosphere will ever get.

Implementation UEE034C3

 41

5.6.5 Rain

This is the simplest circuit of all the sensors. Every time the rain gauge tips the
circuit is broken by a reed switch being released. To make this more logical for
the digital input an inverter has been used to turn a break in the circuit into a
positive pulse. A 1KΩ resistor ties the input to ground when there is a break in
the circuit. The inverter then outputs logic 1. This gets fed directly to the digital
input for the TINI board. The circuit is shown in figure 5.6.5 below.

Figure 5.6.5 – Rain sensor circuit diagram

5.6.6 Complete Circuit

All of the outputs from the sensors (apart from the rain sensor) are connected
directly to an 8-1 multiplexer. An 8 input multiplexer was not needed (a 4 input
would have been sufficient) but this at least leaves room for expansion at a later
date. The channel select pins for the multiplexer are controlled by the digital
outputs from the TINI board. These are joined to the multiplexer board via
ribbon cables. These cables also provide power to the board. The rain sensor
circuit links directly to the digital input port on the TINI board via ribbon cables.
The complete circuit diagram is shown in figure 5.6.6.

Implementation UEE034C3

 42

S
1

S
8

D

C
1

ENB C
3

C
2

Multiplexer

OUT
VCC

GND

Rain

Circuit

Digital Input

To TINI

Digital Output

From TINI

To TINI ADC

OUT GND

VCC

5

6

Wind Spd

Circuit

OUT GND

VCC

5

6

Light

Circuit

OUT GND

VCC

5

6

Wind Dir

Circuit

OUT GND

VCC

5

6

Temp

Circuit

1

1

Figure 5.6.6 – Multiplexer circuit diagram

Testing UEE034C3

 43

6 Testing

6.1 Software

The software was tested during the development stage by using the onboard
LDR sensor as the main input to the system. If the data was being received
from the LDR correctly then there was a high chance that it would run ok from
the external hardware. This did mean that for a majority of the development
process there was only ever one input rather than all 5. This was until the
hardware had been developed. When combining the external hardware there
were a few things that needed to be adjusted.

Firstly there were several delays that needed tweaking. These were mainly to
do with the time between the multiplex switching, to make sure there was
enough time to get the correct data. When the hardware was added each
element needed calibrating in code, so some careful calculations were carried
out to do this (see AdcServlet in the appendices for more details).

6.2 Hardware

The hardware was first tested as individual elements, then once satisfied with
the functionality of each, they were combined in stages and tested. Eventually
the system was complete and tested as a whole.

6.2.1 Individual

The conditioning circuits for each sensor were built and tested at first on bread
board. This allowed component values to be easily changed if required. Once
satisfied with the performance of a circuit it would get transferred to the main
strip board. The multiplex circuit was tested first because this is the building
block of the system. As each circuit was added, the main circuit would get
tested again to make sure that everything still worked alright. The first main test
of the multiplexer was when the first conditioning circuit was added. This was
the sun light level. The reason for this being the first is that it should react pretty
much the same as the onboard LDR. Once this circuit was successfully being
read through the multiplexer and into the ADC it was then a simple case of
adding in the remaining circuits.

No real problems encountered other than accidentally using a dual polarity op-
amp instead of a single polarity one for the amplifying circuit. This was soon
realised and quickly resolved. The board quickly got quite cramped with cabling
but this is really expected with strip board. It would be nice to put the multiplex
circuit onto PCB in the future.

6.2.2 Whole System

When all of the external hardware was complete and the software had been
calibrated, testing on the full system took place. The powering up operation of
TINI was checked to make sure that all the required programs were executing

Testing UEE034C3

 44

on start up. The web page was tested to make sure it was connecting to the
correct TINI servlet. All of the sensors were individually tested to see of they
were displaying the correct data to screen with the correct units being
displayed. The temperature sensor was compared to a digital thermometer to
make sure that both increased by the same amount as they were heated up or
cooled down.

6.3 LAN

All of the testing for TINI was carried out over a Local Area Network (LAN). The
web pages were stored locally rather than on an internet server. This was
because the files were continuously being updated and access times are far
quicker from a local storage.

The system was checked for multi-user capabilities. 3 or 4 computers accessed
the weather data from TINI at the same time without having any problems.

6.4 WAN

Implementing TINI on the actual internet proved slightly harder. In order for a
TINI machine to actually be a node on the internet (in the same way it is on the
LAN) in requires a fixed IP address. These are not that easy to come across a
potentially can cost a great deal of money. Due to this, other approaches were
considered.

• The TINI machine remains on the LAN but has access to the internet via
a gateway. TINI can regularly (say every ten minutes or so) FTP the
latest weather update to an internet server that hosts a main website. All
that would happen is a file containing the weather information would get
updated so as you log onto the website a new weather.html page gets
displayed every 10 minutes. This means that users can not directly link
to the web pages on TINI but can still see the data.

• TINI could send out e-mails (say every few hour) to subscribers of a site
that wish to receive constant weather updates. This is perfectly possible
through standard slush commands.

• Another option is to implement a Point to Point Protocol (PPP). This is
where the user wishing to receive data dials up TINI directly from a
computer instead of going via the internet. This could be a possibility if
TINI was being used to monitor something specific for a company. The
technicians for the company could have the access number and link up
through a phone line.

Outcomes & Problems UEE034C3

 45

7 Outcomes & Problems

7.1 Finished State

The TINI weather station is fully accessible over a LAN via a windows web
browser. TINI can monitor temperature, wind speed, wind direction, level of sun
light and the amount of rain fall. This data gets displayed to the user in an easy
to read format which updates every 10 seconds. This data is displayed as part
of a larger website that provides support to other TINI users.

TINI can also display selected weather data to its LCD screen at the users
request. There have also been experiments with the recording of temperature
data and displaying this in a graph format on the webpage.

7.2 Problems

The main problems encountered were during the setting up and configuration
stages of the project. There were initial problems with getting to grips with TINI
and running programs like JavaKit.

One of the major problems was with accessing TINI in real time via a web
browser. This was actually quite easy in the end as soon as TiniHttpServer had
been discovered. This turned TINI into a web server which could then serve its
own web pages and servlets.

7.3 Critical Analysis

The main element that had an effect on this project is time. There are so many
angles left to take with this project and unfortunately time has run out. Time
management (especially towards the start of the project) could have been better
which would have eased the workload towards the end.

7.4 Future Development

There are many uses for the TINI machine that have come to light during this
project. It would be nice to look at using TINI for control rather than just
monitoring data. If TINI could be used to control equipment through a web
browser it could become very interesting indeed.

Conclusion UEE034C3

 46

8 Conclusion

The web based weather station using TINI has been a great success overall. A
majority of the objectives that were set out initially have been met or exceeded.

TINI was successfully configured to serve its own web pages over a Local Area
Network (LAN). Users are able to connect to the TINI machine through a
windows based web browser and retrieve the simulated weather data in real
time.

Other functionality of the Taylec Tutor board was explored. The real time
weather data can also be displayed to the onboard LCD screen. This means
that TINI and the weather sensors can be used as a stand alone machine to
view the simulated weather data. This is completely separate from the network
or any PC. The user can select the data to be viewed by setting dip switches.

The sensors used for this simulation were designed and made during this
project. None of these sensors would really be suitable in the real world but
they provide good enough simulation data for the purpose of this project.

The whole weather station system was tested thoroughly on a LAN with 6 other
computers present. Multiple user access was tested on the LAN with 3 or 4
different computers all accessing the weather data at the same time. This was
successful.

The scope for using TINI directly on the internet was investigated but found to
be not possible at this point in time due to internet access problems. The best
solution would be to have TINI on a LAN with access to the internet. TINI could
then update an internet server with information at regular intervals.

During this project all of the learning aims were achieved. The power of TINI is
incredible and learning all about it has been a joy.

Bibliography UEE034C3

 47

9 Bibliography

9.1 Websites
http://www.ibutton.com/TINI/index.html - This is the main website for TINI

http://www.dalsemi.com – Manufactures of TINI

http://www.systronix.com – Interface board manufacturer

http://www.ibutton.com – Home of iButton

http://java.sun.com/j2se/1.3/ - Java SDK download

http://java.sun.com/products/javacomm/index.html - Communications API

http://www.ibutton.com/TINI/software/soft_order.html - TINI SDK download

The TINI interest group is an e-mail forum where you can network with other TINI developers.
This is a major source of useful information about TINI.

www.smartsc.com – TiniHttpServer developers

http://java.sun.com/products/servlet/download.html#specs – Servlet classes

http://jakarta.apache.org/builds/jakarta-ant/release/v1.4/bin/ - Ant source

http://tiniant.sourceforge.net/ - TiniAnt source

9.2 Manuals & Data Sheets

1. The TINI Specification and Aser Guide – Dom Loomis
2. TINI Data Sheet – Dallas Semiconductors
3. LM324 Data Sheet – Fairchild
4. LM335 Data Sheet – SGS Thompson
5. HCF4051 Data Sheet – SGS Thompson
6. ICL7660S Data Sheet – Harris
7. MC10409UB Data Sheet – On

9.3 Books

1. Electronic Principles – Marvino 6th Edition
2. HTML 4 for the world wide web – Elizabeth Castro
3. JavaScript for the world wide web – Tom Negrino & Dori Smith

Appendices UEE034C3

 1

10 Appendices

10.1 Code

10.1.1 Adc.class – DOS
import java.lang.*;
import java.util.*;
import java.io.*;
import ADCManip;
import Interrupt;
import MuxSelect;
import com.dalsemi.comm.*;
import com.dalsemi.system.*;

// ADC Read Routine

public class Adc
{
 private static final void pause(int delay_)
 {
 try
 {
 Thread.sleep(delay_);
 }
 catch (InterruptedException e_)
 {
 }
 }

 public static void readADC()
 {
 try
 {
 System.out.println("ADC Tester");

 ADCManip adc=new ADCManip();
 MuxSelect select=new MuxSelect();

 while(1==1)
 {
 select.add(MuxSelect.CH1);
 System.out.println("Channel 1: " + adc.readLinearized());
 pause(500);
 select.clear();

 select.add(MuxSelect.CH2);
 System.out.println("Channel 2: " + adc.readLinearized());
 pause(500);
 select.clear();

 select.add(MuxSelect.CH3);
 System.out.println("Channel 3: " + adc.readLinearized());
 pause(500);
 select.clear();

 select.add(MuxSelect.CH4);
 System.out.println("Channel 4: " + adc.readLinearized());
 pause(500);
 select.clear();

 pause(2000);

Appendices UEE034C3

 2

 }
 }
 catch(IllegalAddressException err_)
 {
 System.out.println(err_.toString());
 }
 }

 public static void main(String[] args)
 {
 readADC();
 }

}

10.1.2 Adc.class

///
//Adc.class source file
///

import java.lang.*;
import java.util.*;
import java.io.*;
import com.dalsemi.comm.*;
import com.dalsemi.system.*;

import com.taylec.tini.ADCManip;
import MuxSelect;

// ADC Read Routine

public class Adc
{
 private static final void pause(int delay_)
 {
 try
 {
 Thread.sleep(delay_);
 }
 catch (InterruptedException e_)
 {
 }
 }

 public static void readADC()
 {

 try
 {

 ADCManip adc=new ADCManip();
 MuxSelect select=new MuxSelect();

 while(1==1)
 {

RandomAccessFile file = new
RandomAccessFile("./docs/adc/adcdata.bin", "rw");

 file.seek(0);

 select.add(MuxSelect.CH1);

Appendices UEE034C3

 3

 file.writeDouble(adc.readLinearized());
 pause(100);
 select.clear();

 select.add(MuxSelect.CH2);
 double windSpeed = adc.readLinearized();
 int Speed = (int)(windSpeed/3.4);
 file.writeInt(Speed);
 pause(100);
 select.clear();

 select.add(MuxSelect.CH3);
 double windDir = adc.readLinearized();
 String Dir = WindDirCal(windDir);
 file.writeUTF(Dir);
 pause(100);
 select.clear();

 select.add(MuxSelect.CH4);
 double temp = adc.readLinearized();
 int newTemp = (int)(temp/2.57);
 file.writeInt(newTemp);
 pause(100);
 select.clear();

 file.close();

 pause(2000);

 }
 }
 catch(IllegalAddressException err_)
 {
 System.out.println(err_.toString());
 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);
 }
 catch (IOException e)
 {
 System.err.println("Writing error: " + e);
 }
 }

 public static String WindDirCal(double wind)
 {
 String dir = "";

 if(wind<=5)
 {
 dir = "N";
 }
 else if(5<wind&&wind<=12)
 {
 dir = "NW";
 }
 else if(12<wind&&wind<=26)
 {
 dir = "W";
 }
 else if(26<wind&&wind<=48)
 {
 dir = "SW";
 }
 else if(48<wind&&wind<=78)
 {
 dir = "S";

Appendices UEE034C3

 4

 }
 else if(78<wind&&wind<=125)
 {
 dir = "SE";
 }
 else if(125<wind&&wind<=215)
 {
 dir = "E";
 }
 else
 {
 dir = "NE";
 }

 return dir;
 }

 public static void main(String[] args)
 {
 readADC();
 }

}

10.1.3 AdcServlet.class
//AdcServlet.java
//
//This Servlet reads data from the ADC and displays it as text on a web page.

import java.io.IOException;
import java.io.PrintWriter;

import java.util.Date;
import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.dalsemi.onewire.OneWireException;
import com.dalsemi.system.*;

public class AdcServlet
extends HttpServlet
implements SingleThreadModel
{
 private static final void pause(int delay_)
 {
 try
 {
 Thread.sleep(delay_);
 }
 catch (InterruptedException e_)
 {
 }
 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 doGet(req, res);
 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

Appendices UEE034C3

 5

 throws ServletException, IOException
 {

 // Do HTTP header stuff
 res.setContentType("text/html");

 // Get Writer
 PrintWriter pw = res.getWriter();

 // Start HTML
 pw.println("<html>");
 pw.println("<head>");

pw.println("<meta http-equiv = 'refresh' Content = '10;
192.168.1.10/servlet/AdcServlet'>");

 pw.println("<title>Weather</title></head>");
 pw.println("<BODY>");
 pw.println("<body>");

 // Send HTML body
 try
 {
 sendBody(pw);
 }
 catch(OneWireException ibe)
 {
 pw.println("<H1>Got a ADCException!</H1>");
 pw.println(ibe);
 }

 // Finish HTML
 pw.println("</body></html>");
 }

 public void sendBody(PrintWriter pw)
 throws OneWireException
 {
 try
 {

pw.println("<H1>Current Weather
Data</H1>");

 pw.print ("This data was loaded at ");
 pw.print (getCurrentTime());
 pw.println(".<p>");

 pw.println("<hr>");
 pw.println("
");
 pw.print ("Rain Fall is: ");
 pw.print (ReadRain());
 pw.println("mm
");
 pw.println("
");
 pause(50);

 //get data from file

RandomAccessFile inputFile = new
RandomAccessFile("./docs/adc/adcdata.bin", "r");

 inputFile.seek(0);

 double light = inputFile.readDouble();
 int windSpeed = inputFile.readInt();
 String windDir = inputFile.readUTF();
 int temp = inputFile.readInt();

 inputFile.close();

Appendices UEE034C3

 6

 pw.println("<hr>");
 pw.println("
");
 pw.print ("Light Level is: ");
 pw.print ("<img src=\"../pics/");
 String pic = Light(light);
 pw.print (pic);

pw.print ("\" align=\"middle\" width=\"105\"
height=\"77\">");

 pw.println("
");
 pw.println("
");

 pw.println("<hr>");
 pw.println("
");
 pw.print ("Wind Speed is: ");
 pw.print (windSpeed);
 pw.println(" mph
");
 pw.println("
");

 pw.println("<hr>");
 pw.println("
");
 pw.print ("Wind Direction is: ");
 pw.print (windDir);
 pw.println("
");
 pw.println("
");

 pw.println("<hr>");
 pw.println("
");
 pw.print ("Temperature is: ");
 pw.print (temp);
 pw.println(" deg C
");
 pw.println("
");

 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);
 }
 catch (IOException e)
 {
 System.err.println("Writing error: " + e);
 }

 }

 public static int ReadRain()
 {
 int data = 0;

 try
 {

RandomAccessFile file = new
RandomAccessFile("./docs/rain/raindata.bin", "r");

 file.seek(0);

 data = file.readInt();

 file.close();

 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);
 data = 998;
 }
 catch (IOException e)
 {

Appendices UEE034C3

 7

 System.err.println("Writing error: " + e);
 data = 999;
 }

 return data;
 }

 public static String Light(double light)
 {
 String pic = "";

 if(light<=15)
 {
 pic = "moon.gif";
 }
 else if(15<light&&light<=60)
 {
 pic = "cloud.gif";
 }
 else if(60<light&&light<=120)
 {
 pic = "suncloud.gif";
 }
 else
 {
 pic = "sun.gif";
 }

 return pic;
 }

 public static String getCurrentTime()
 {
 return new Date().toString();
 }

}

10.1.4 FileWrite.class
import java.io.*;

public class FileRead
{
 public static void Read()
 {
 PrintStream outputFile = null;

 try
 {
 double data = 0;

RandomAccessFile inputFile = new
RandomAccessFile("./docs/graf/tempdata.bin", "r");

 //Go to that position.
 inputFile.seek(0);

outputFile = new PrintStream(new
FileOutputStream("./docs/graf/tempgraph.html"));

 outputFile.println("<HTML>");
 outputFile.println("<HEAD><TITLE>Temperature Graph</TITLE></HEAD>");

Appendices UEE034C3

 8

 outputFile.println("<BODY>");
 outputFile.println("<H1>Temperature Graph</H1>");

 outputFile.println("<SCRIPT LANGUAGE='JavaScript'>");

 int num = 0;
 String time = "";

 for(int i=0;i<24;i++)
 {
 if(num<10)
 {
 time = "0"+num;
 }
 else
 {
 time = ""+num;
 }

 data = inputFile.readDouble();

outputFile.println("document.write('<font face=\"arial\"
size=3>' + \"" + time + ":00Hrs\");");
outputFile.println("document.write('<img src=\"clear.gif\"
width=10 height=10>');");
outputFile.println("document.write('<img src=\"red.gif\"
width=" + data + " height=10>');");

 outputFile.println("document.write('
');");

 num++;
 }

 outputFile.println("</SCRIPT>");

 outputFile.println("</BODY>");
 outputFile.println("</HTML>");

 outputFile.close();

 inputFile.close();

 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);
 }
 catch (IOException e)
 {
 System.err.println("Writing error: " + e);
 }
 }

}

10.1.5 FileRead.class

import java.io.*;

public class FileRead
{
 public static void Read()

Appendices UEE034C3

 9

 {
 PrintStream outputFile = null;

 try
 {
 double data = 0;

RandomAccessFile inputFile = new
RandomAccessFile("./docs/graf/tempdata.bin", "r");

 //Go to that position.
 inputFile.seek(0);

outputFile = new PrintStream(new
FileOutputStream("./docs/graf/tempgraph.html"));

 outputFile.println("<HTML>");
 outputFile.println("<HEAD><TITLE>Temperature Graph</TITLE></HEAD>");
 outputFile.println("<BODY>");
 outputFile.println("<H1>Temperature Graph</H1>");

 outputFile.println("<SCRIPT LANGUAGE='JavaScript'>");

 int num = 0;
 String time = "";

 for(int i=0;i<24;i++)
 {
 if(num<10)
 {
 time = "0"+num;
 }
 else
 {
 time = ""+num;
 }

 data = inputFile.readDouble();

outputFile.println("document.write('<font face=\"arial\"
size=3>' + \"" + time + ":00Hrs\");");
outputFile.println("document.write('<img src=\"clear.gif\"
width=10 height=10>');");
outputFile.println("document.write('<img src=\"red.gif\"
width=" + data + " height=10>');");

 outputFile.println("document.write('
');");

 num++;
 }

 outputFile.println("</SCRIPT>");

 outputFile.println("</BODY>");
 outputFile.println("</HTML>");

 outputFile.close();

 inputFile.close();

 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);

Appendices UEE034C3

 10

 }
 catch (IOException e)
 {
 System.err.println("Writing error: " + e);
 }
 }

}

10.1.6 LCDWrite.class
import java.lang.*;
import java.util.*;
import java.io.*;

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

import com.taylec.tini.LCDManipFormat;
import com.taylec.tini.DIPManip;
import MuxSelect;

public class LCDWrite
{
 private static final void pause(int delay_)
 {
 try
 {
 Thread.sleep(delay_);
 }
 catch (InterruptedException e_)
 {
 }
 }

 public static void LCDOut()
 {

 try
 {
 PrintStream os = System.out;
 LCDManipFormat manip = new LCDManipFormat();
 DIPManip dip=new DIPManip();

 while(1==1)
 {

 DipValue=dip.read();

 if((DipValue&DIPManip.S6) == DIPManip.S6)
 {
 manip.out.print("Wind Spd: " + windSpeed + " mph");
 manip.out.flush();
 pause(2000);
 manip.clear();
 }

 DipValue=dip.read();

 if((DipValue&DIPManip.S5) == DIPManip.S5)
 {
 manip.out.print("Wind Dir: " + windDir);
 manip.out.flush();
 pause(2000);
 manip.clear();

Appendices UEE034C3

 11

 }

 DipValue=dip.read();

 if((DipValue&DIPManip.S4) == DIPManip.S4)
 {
 manip.out.print("Temperature: " + temp);
 manip.out.flush();
 pause(2000);
 manip.clear();
 }
 }

 }
 catch (IllegalAddressException err_)
 {
 System.out.println(err_.toString());
 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);
 }
 catch (IOException e)
 {
 System.err.println("Writing error: " + e);
 }

 }

 public static int ReadRain()
 {
 int data = 0;

 try
 {

RandomAccessFile file = new
RandomAccessFile("./docs/rain/raindata.bin", "r");

 file.seek(0);

 data = file.readInt();

 file.close();

 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);
 }
 catch (IOException e)
 {
 System.err.println("Writing error: " + e);
 }

 return data;
 }

 public static String Light(double light)
 {
 String text = "";

 if(light<=15)
 {
 text = "Dark";
 }
 else if(15<light&&light<=60)
 {

Appendices UEE034C3

 12

 text = "Dull";
 }
 else if(60<light&&light<=120)
 {
 text = "Bright";
 }
 else
 {
 text = "Very Bright";
 }

 return text;
 }

 public static void main(String[] args)
 {
 LCDOut();
 }
}

10.1.7 Rain.class
import java.lang.*;
import java.util.*;
import java.io.*;

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

import com.taylec.tini.DIPManip;

public class Rain
{
 private static final void pause(int delay_)
 {
 try
 {
 Thread.sleep(delay_);
 }
 catch (InterruptedException e_)
 {
 }
 }

 public static void ReadRain()
 {
 int val = 0;
 int oldDay = 0;

 //check existing file value
 try
 {

RandomAccessFile file = new RandomAccessFile("./docs/rain/raindata.bin",
"rw");

 file.seek(0);
 val = file.readInt();
 oldDay = file.readInt();

 file.close();

 }
 catch(FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);

Appendices UEE034C3

 13

 }
 catch (IOException e)
 {
 System.err.println("Reading error: " + e);
 }

 int day = getCurrentTime();

 if(oldDay!=day)
 {
 val = 0;
 }

 while(1==1)
 {
 try
 {
 PrintStream os = System.out;
 DIPManip dip=new DIPManip();

 int DipValue=dip.read();

 if((DipValue&DIPManip.S1) == DIPManip.S1)
 {
 if(getCurrentTime()!=day)
 {
 day = getCurrentTime();
 val = 0;
 }

 val++;

RandomAccessFile file = new
RandomAccessFile("./docs/rain/raindata.bin", "rw");

 file.seek(0);

 file.writeInt(val);
 file.writeInt(getCurrentTime());

 file.close();

 pause(600);

 }

 while((DipValue&DIPManip.S1) == 0)
 {
 DipValue=dip.read();

 pause(100);
 }

 }
 catch (IllegalAddressException err_)
 {
 System.out.println(err_.toString());
 }
 catch (FileNotFoundException e)
 {
 System.err.println("This shouldn't happen: " + e);
 }
 catch (IOException e)
 {
 System.err.println("Writing error: " + e);

Appendices UEE034C3

 14

 }
 }

 }

 public static int getCurrentTime()
 {
 Clock c = new Clock();
 c.getRTC();
 return c.getDay() ;
 }

 public static void main(String[] args)
 {
 ReadRain();
 }
}

10.1.8 MuxSelect.class

import com.dalsemi.system.*;

//Selects the Mux Channel

public class MuxSelect extends com.taylec.tini.DigitalOutputManip
{

 //Channel 1
 public static final int CH1=0x00;

 //Channel 2
 public static final int CH2=0x01;

 //Channel 3
 public static final int CH3=0x02;

 //Channel 4
 public static final int CH4=0x03;

 //Channel 5
 public static final int CH5=0x04;

 //Channel 6
 public static final int CH6=0x05;

 //Channel 7
 public static final int CH7=0x06;

 //Channel 8
 public static final int CH8=0x07;

 //Construct with default Dataport address and turn all LEDs off
 //@see com.dalsemi.system.DataPort

 public MuxSelect() throws IllegalAddressException
 {
 super(0x380000);
 clear();
 }

 //Construct with a given Dataport address and turn all LEDs off
 //@param address_ Dataport address
 //@see com.dalsemi.system.DataPort

Appendices UEE034C3

 15

 public MuxSelect(int address_) throws IllegalAddressException
 {
 super(address_);
 clear();
 }

}

10.2 Pictures

Appendices UEE034C3

 16

Appendices UEE034C3

 17

10.3 Emails

Email to TINI interest group – 30/01/2002

Hi,

If you want to generate web pages with dynamic content then have you
looked at Smartsc's TiniHttpServer :-

http://www.smartsc.com/tini/TiniHttpServer/

Bob

In message <001d01c1a9bc$f817a710$fb01a8c0@dave>, David Pilch
<bristol@d avidpilch.freeserve.co.uk> wrote

I’m quite new to TINI so please bear with me. I have a www.taylec.com
Tutor board and 1Mb TINI Board. I have installed TINI OS and Slush
and programs run quite happily using either JavaKit or Telnet.
 However, I want to be able to connect to TINI and run *.tini programs
with a single command line, so it can be incorporated into a web page.
 Is there any way of achieving this? I keep on having problems with
the login prompt popping up. Telnet does support auto login using the
URL telnet://root:tini@hostname but TINI does not appear to support
this because the login prompt still appears.

Is there any way of removing the login request altogether or getting
round the problem another way?

Any suggestions would be appreciated.

Regards,

David Pilch.

Bob Hinton

References UEE034C3

 i

11 References

1
 http://www.ibutton.com/TINI/index.html - This is the main website for TINI

2
 http://www.dalsemi.com – Manufactures of TINI

3
 http://www.systronix.com – Interface board manufacturer

4
 http://www.ibutton.com – Home of iButton

5
 http://java.sun.com/j2se/1.3/ - Java SDK download

6
 http://java.sun.com/products/javacomm/index.html - Communications API

7
 http://www.ibutton.com/TINI/software/soft_order.html - TINI SDK download

8
 The TINI interest group is an e-mail forum where you can network with other TINI developers.

This is a major source of useful information about TINI.

9
 www.smartsc.com – TiniHttpServer developers

10

 http://java.sun.com/products/servlet/download.html#specs – Servlet classes

11

 http://jakarta.apache.org/builds/jakarta-ant/release/v1.4/bin/ - Ant source

12

 http://tiniant.sourceforge.net/ - TiniAnt source

